Acute upregulation of blood-brain barrier glucose transporter activity in seizures.

نویسندگان

  • E M Cornford
  • E V Nguyen
  • E M Landaw
چکیده

Brain extraction of (18)F-labeled 2-fluoro-2-deoxy-D-glucose (FDG) was significantly higher in pentylene tetrazole (PTZ)-treated rats (32 +/- 4%) than controls (25 +/- 4%). The FDG permeability-surface area product (PS) was also significantly higher with PTZ treatment (0.36 +/- 0.05 ml. min(-1). g(-1)) than in controls (0.20 +/- 0.06 ml. min(-1). g(-1)). Cerebral blood flow rates were also elevated by 50% in seizures. The internal carotid artery perfusion technique indicated mean [(14)C]glucose clearance (and extraction) was increased with PTZ treatment, and seizures increased the PS by 37 +/- 16% (P < 0.05) in cortical regions. Because kinetic analyses suggested the glucose transporter half-saturation constant (K(m)) was unchanged by PTZ, we derived estimates of 1) treated and 2) control maximal transporter velocities (V(max)) and 3) a single K(m). In cortex, the glucose transporter V(max) was 42 +/- 11% higher (P < 0.05) in PTZ-treated animals (2.46 +/- 0.34 micromol. min(-1). g(-1)) than in control animals (1.74 +/- 0.26 micromol. min(-1). g(-1)), and the K(m) = 9.5 +/- 1.6 mM. Blood-brain barrier (BBB) V(max) was 31 +/- 10% greater (P < 0.05) in PTZ-treated (2.36 +/- 0. 30 micromol. min(-1). g(-1)) than control subcortex (1.80 +/- 0.25 micromol. min(-1). g(-1)). We conclude acute upregulation of BBB glucose transport occurs within 3 min of an initial seizure. Transporter V(max) and BBB glucose permeability increase by 30-40%.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Contribution of Nitric Oxide Synthase (NOS) Activity in Blood-Brain Barrier Disruption and Edema after Acute Ischemia/ Reperfusion in Aortic Coarctation-Induced Hypertensive Rats

Background: Nitric oxide synthase (NOS) activity is increased during hypertension and cerebral ischemia. NOS inactivation reduces stroke-induced cerebral injuries, but little is known about its role in blood-brain barrier (BBB) disruption and cerebral edema formation during stroke in acute hypertension. Here, we investigated the role of NOS inhibition in progression of edema formation and BBB d...

متن کامل

Downregulation of blood-brain barrier glucose transporter in experimental diabetes.

Previous studies showing downregulation of blood-brain barrier (BBB) glucose-transporter activity in vivo in experimental diabetes have recently been questioned. Therefore, our investigations examined both the BBB glucose-transporter activity in experimental diabetes in vivo, with the use of the in situ internal carotid artery perfusion technique, and the microvessel glucose-transporter concent...

متن کامل

Signaling to P-glycoprotein-A new therapeutic target to treat drug-resistant epilepsy?

Epilepsy affects more than 60 million people worldwide. While most patients can be treated with antiepileptic drugs, up to 40% of patients respond poorly to pharmacotherapy. This drug resistance is not well understood and presents a major clinical problem. In this short review we provide background information on one potential cause of antiepileptic drug resistance, namely, upregulation of the ...

متن کامل

Cerebral energy metabolism, glucose transport and blood flow: changes with maturation and adaptation to hypoglycaemia.

Brain maturation is characterized by a peak of cerebral energy metabolism and blood flow occurring between 3 and 8 years of age in humans and around 14-17 days of postnatal life in rats. This high activity coincides with the period of active brain growth. The human brain is dependent on glucose alone during that period, whereas rat brain uses both glucose and ketone bodies to cover its energeti...

متن کامل

Overcoming P-glycoprotein-Mediated Drug Resistance in Epilepsy

2. ABSTRACT More than 20 million epileptics worldwide do not respond to antiepileptic drugs. This is in part due to overexpression of the drug efflux transporter, P-glycoprotein, in capillaries of the blood-brain barrier. However, the mechanism signaling P-glycoprotein upregulation is unknown. Lack of this knowledge is an important clinical problem, because it limits successful treatment of pat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 279 3  شماره 

صفحات  -

تاریخ انتشار 2000